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Abstract The problem of protein structure prediction in the
hydrophobic-polar (HP) lattice model is the prediction of
protein tertiary structure. This problem is usually referred
to as the protein folding problem. This paper presents a
method for the application of an enhanced hybrid search
algorithm to the problem of protein folding prediction, using
the three dimensional (3D) HP lattice model. The enhanced
hybrid search algorithm is a combination of the particle
swarm optimizer (PSO) and tabu search (TS) algorithms.
Since the PSO algorithm entraps local minimum in later
evolution extremely easily, we combined PSO with the TS
algorithm, which has properties of global optimization.
Since the technologies of crossover and mutation are applied
many times to PSO and TS algorithms, so enhanced hybrid
search algorithm is called the MCMPSO-TS (multiple cross-
over and mutation PSO-TS) algorithm. Experimental results
show that the MCMPSO-TS algorithm can find the best
solutions so far for the listed benchmarks, which will help
comparison with any future paper approach. Moreover, real
protein sequences and Fibonacci sequences are verified in
the 3D HP lattice model for the first time. Compared with the
previous evolutionary algorithms, the new hybrid search
algorithm is novel, and can be used effectively to predict
3D protein folding structure. With continuous development
and changes in amino acids sequences, the new algorithm
will also make a contribution to the study of new protein
sequences.

Keywords 3DHP lattice model . Crossover and mutation .
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Introduction

Proteins—polymers composed of chains of amino acids—
are present in many different types, and play many roles, in
living organisms. Initially, a protein is a linear chain of amino
acids. Proteins fold, under the influence of several chemical
and physical factors, into the three-dimensional (3D) struc-
tures that determine their biological functions and properties
[1–3]. In most successful protein structure prediction (PSP),
essentially a lattice model has been utilized for folding
backbone sampling at the top of a hierarchical approach
[4]. Given the amino acid sequence of a protein, the predic-
tion of that protein’s tertiary structure [5] is known as the
protein folding problem. The prediction of protein structure
is a NP-hard (nondeterministic polynomial time) problem,
which attracts many researchers to study this area.

The prediction of protein structure is one of the most
prominent problems in computational biology [6–8]. The
function of a protein depends mainly on its tertiary struc-
ture, which in turn depends on its primary structure. It is
known that ill-formed proteins (due to wrong folding) are
the origin of numerous diseases, such as cystic fibrosis,
Parkinson’s disease, Alzheimer’s disease, and some types
of cancer [9]. If we can predict the tertiary structures of
proteins with high accuracy, it will become easy to treat
these diseases. Due to their great importance for medicine
and biochemistry, proteins have been the focus of much
research [10], with the result that much information is
now available. Research on 3D structure prediction is
very important in the search for new drugs with specific
functionality.

Despite the growing number of proteins already discov-
ered, further research is still ongoing. The growing calcula-
tion power of computers can be used to solve the complex
computational problems in protein structure prediction. In
this regard, there are two major challenges to solve [11]:
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(1) finding good measures to verify the qualities of candi-
date structures;

(2) given such measures, determining optimal or close-to-
optimal structures for a given amino acid sequence.

A variety of mathematical models for protein have
been put forward, of which the AB off-lattice model
(Fig. 1), which also uses only two types of monomers,
called “A” (hydrophobic) and “B” (hydrophilic), and
hydrophobic-polar (HP) lattice model (Fig. 2), are the
most popular.

In recent years, many algorithms for protein folding re-
search have been proposed in the 3D HP lattice model, e.g.,
the PERM, MOSE, SISPERS, Evolutionary [13], and Ge-
netic algorithms, etc. In this paper, we present an enhanced
hybrid search algorithm that combines an enhanced particle
swarm algorithm with an enhanced tabu search (TS) algo-
rithm. The enhanced particle swarm optimizer (PSO) algo-
rithm [14] appends the operation of crossover (single-point
and two-point crossover), and the enhanced TS algorithm
adds the operation of mutation.

The remainder of the paper is organized as follows.
Section “HP lattice model” gives an introduction to the HP
lattice model; “Calculation of free energy” denotes the function
of energy and describes computing approaches; “Relevant
algorithm introduction” summarizes relevant algorithms
used in the hybrid algorithm; “MCMPSO-TS hybrid search
algorithm” describes the MCMPSO-TS algorithm in detail.
Experimental results obtained by our method and by other
methods are compared in the section on “Experimental results
and discussion”. A final “Conclusions” section concludes the
paper.

HP lattice model

The HP model is based on the observation of the hydropho-
bic interaction between two amino acid residues. This is the

driving force for protein folding and the development of
a native protein state [15–18]. The simplest model for
the study of protein folding is known as the HP model,
which exists in either 2D or 3D versions [19]. The 3D
lattice model proposed by Dill [5, 20, 21] is applied in
this paper.

The simplified HP lattice model divides the amino acids
into two different types: hydrophobic (H) and hydrophilic
(P). The proposed lattice model has the following two ad-
vantages [11]:

(1) amino acids are modeled as single beads rather than by
every atom;

(2) the beads are restricted to a rigid lattice.

Based on the HP lattice model, the energy of a given
conformation is defined as the number of connections
between Hs of topological neighbors that are not direct
neighbors in the sequence [19]. Generally speaking,
natural proteins adopt both the lowest energy structure
and the most stable. The energy function determines the
interactions, and different types of amino acids interact
differently.

Calculation of free energy

The free energy of amino acids can be calculated by the
following formula [20]:

εij ¼ −1:0 the pair of H and H residues
0:0 others

�
ð1Þ

The free energy of the protein sequence can be obtained as
follows:

E ¼
X
i; j

△rijεij ð2Þ
Fig. 1 AB off-lattice model [12]

Fig. 2 3D HP lattice model [11]
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where the parameter

△rij ¼ 1 si and s j are adjacent but not connected amino acids
0 others

�

ð3Þ

The HP lattice model has two bead types: H (hydrophobic)
and P (hydrophilic). In the sequences of amino acids, H–H
connections are assigned an energy value of −1. The free
energy is minimum while the number of H–H connections is
maximum. The optimal conformation in the HP model is the
one that has the maximum number of H–H connections,
which gives the lowest energy value.

The problem of optimization of protein folding can be
transformed into the calculation of the minimum free energy
of protein folding conformation. Formally, given an HP
sequence s=s1,s2,s3,⋯,sn, find a construction of s with
minimum energy. That is: find c*∊C(s), such that E
(c*)=min{E(c)|c∊C}, where C(s) is the set of all valid con-
formations for s [6, 11, 22, 23].

An introduction to the relevant algorithms

Enhanced particle swarm optimizer

The PSO algorithm was first put forward by Eberhart
and Kennedy [24]. The algorithm is based on the infor-
mation transmission in bird foraging behaviors; each
individual can remember not only the best position that
it has found currently, but also the best position that
individuals find globally [24]. Using these two optimal
values, the birds can find food.

In the PSO, the trajectory of each individual in the
search space is adjusted by dynamically altering the veloc-
ity of each particle, according to its own experience and the
experience of neighbor particles in the search space. In the
D-dimensional search space, every particle is a point. If
there are m particles, the position of ith particle is denoted
as Xi=(xi1,xi2,⋯,xiD), the current velocity is defined as
Vi=(vi1,vi2,⋯,viD).

According to the fitness function, the best position of each
particle is as follows:

Pi ¼ pi1; pi2; pi3;⋯; piDð Þ

The fittest particle found so far is

Pg ¼ pg1; pg2; pg3;⋯; pgD
� �

[11].

The velocity and position of the ith particle are updated by
the formulae:

v t;tþ1ð Þ ¼ wv i; tð Þ þ c1r1 pbest i;tð Þ−x i;tð Þ
� �

þ c2r2 gbest g;tð Þ−x i;tð Þ
� � ð4Þ

x i;tþ1ð Þ ¼ x i; tð Þ þ v i;tþ1ð ÞÞ ð5Þ

Here w is referred to as the inertia. Where c1 and c2 are
referred to self confidence and swarm confidence respective-
ly. r1 and r2 are random real numbers between 0 and 1.

Compared with standard PSO, the enhanced PSO has
some prominent differences. Though updated formulas of
positions and velocities of particles are unchanged, the pa-
rameter is updated by a new formula as follows:

w ¼ w max−time* w max−w minð Þ=MaxDT ð6Þ

The w_max and w_min are the range of inertia w, time is
the circular times, MaxDT is the maximum number of itera-
tions that make sure it is easy to find the suitable value and
promote the efficiency. The greatest difference is that a
multiple crossover operation, including single-point cross-
over and two-point crossover is used. In the enhanced PSO
algorithm, the crossover operation is applied many times
during the selection of the best solution and the search
procedure.

Enhanced tabu search optimizer

Tabu search (TS)—a global neighboring search algorithm
proposed by Glover—is the simulation of human memory
function [25, 26]. The PSO algorithm converges slowly in
the latter period, and sinks easily into local optimal solution
[27]. TS is the best choice to solve this problem. The greatest
difference between standard TS and enhanced TS is that
mutation is applied to the standard TS search algorithm
several times, which promotes the efficiency of the search
and changes the search position.

MCMPSO-TS hybrid search algorithm

The new algorithm is composed of enhanced PSO and en-
hanced TS. The new algorithm is called MCMPSO-TS (mul-
tiple crossover and mutation PSO-TS).

Although PSO has many advantages, the disadvantages of
poor convergence precision and the tendency to trap into the
local optimum cannot be ignored. TS, as an extension of
local neighboring search, is a global search algorithm. So, in
this paper, we introduce TS to cover the shortcomings of
PSO [11]. At the same time, we introduce the technologies of
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crossover and mutation, which are very useful for improving
the quality of the search procedure.

In this paper, we use the enhanced PSO output result as
the input for the enhanced TS algorithm. In the search
process, we utilize the operations of crossover and mutation
to guarantee the search space. Further, we introduce a new
encoded mode. The following sections explain the new
hybrid search algorithm in detail.

Initialization

If the input of the amino acid sequence is composed of H and
P, which is of length n, then each individual in the population
is a string of length n. For example, HHPPHHPHPH is a
string of length 20. If the symbol is H, the encoding is 1,
otherwise 0, and the amino acid sequence can be written as
1100110101. The position of the amino acid is represented
by a 3D coordinate. Since folding direction between two
amino acids is the basic element in the protein 3D space
structure, the folding direction is also an essential element to
show the protein 3D space structure in the computer.

For the 3D lattice model, there are six folding directions,
which are denoted by six figures in this paper as follows [28]:

‘1’ denotes positive direction of x-axis
‘2’ denotes negative direction of x-axis
‘3’ denotes positive direction of y-axis
‘4’ denotes negative direction of y-axis
‘5’ denotes positive direction of z-axis

‘6’ denotes negative direction of z-axis

In other words, in this paper, the amino acid is
presented by a 4D coordinate. The first position is ini-
tialized as (0,0,0,0), which means the coordinate of the
amino acid is (0,0,0). The first amino has no folding
direction, the value is 0. The next folding direction of
amino acid is random. For example, the sequence is
HHPPHHPHPH, it is composed of 10 amino acids. So
the sequence can be written as 1100110101. The position
of the first amino acid is (0,0,0,0); it has no folding
direction. The direction of the second amino acid can
be produced at random. If it is 3 (the positive direction
of the y-axis), the coordinate of the amino acid can be
decided by the previous coordinate (0,0,0,0).

The previous coordinate (0,0,0,0) means:

amino(1,0)=0 coordinate of x-axis
amino(1,1)=0 coordinate of y-axis
amino(1,2)=0 coordinate of z-axis
amino(1,2)=0 folding direction

So the second is:

amino (2,0)=amino (1,0)=0 coordinate of x-axis
amino (2,1)=amino (1,1)+1=1 coordinate of y-axis
amino (2,2)=amino (1,2)=0 coordinate of z-axis
amino (2,3)=3 folding direction

In conclusion, the coordinate of second amino acid is
(0,1,0,3).

Initilize individual
position and vetority

Crossover

Remember the local
best value

Calculate the energy
value

mutation

Update position and
vectority

Calculate the energy value and
remember the local best solution

as the TS candidate solution

Initial the table list empty

Mutate produce a number of
neighborthood based on the present
solution and determine candidate

solutions according to fitness

Terminal codition?

Satisfy aspiration
criterion

Judge the tabu property of the
candidate solution

Terminate the
search and output
the optimal result

Set the solution as the
present solution,replace
the pioneer subject and
update the best situation

NO

NO

YES

YES

Crossover and update the particle
position and vectority

main
circulate

Fig. 3 Flowchart of multiple
crossover and mutation particle
swarm optimizer and tabu
search (MCMPSO-TS)
algorithm
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Methods of crossover and mutation

In the paper, single-point crossover and two-point crossover
are used. The method that is applied to the paper is the
following: first, choose the individual that needs to be
adopted for the operation of crossover; then produce the
positions of the crossover randomly; at last swap the direc-
tions that are in the positions chosen. A single-point cross-
over is used to swap the directions from the position that is
chosen to last. The two-point crossover is to swap the di-
rections between the positions that are chosen. When the
directions are changed, we should change the coordinates,
too. Therefore, the method can generate population diversity.

Method of generating the neighborhood search

In this paper, we use the idea of mutation to generate a
neighborhood solution. The disturbance mutation method
is used to generate neighbor solutions of the current solu-
tions. For the present solution, we utilize multiple-point
(two-point in this paper) mutation in the early stage of the
search to guarantee better diversity and single-point mutation
in the later stage to assure convergence of the algorithm. The
implementation is presented as follows:

We select the position of mutation xk at random and use
the following function to update it [29]:

xknew ¼ floor xk þ 2� π� f rð Þ � c� ratei
� � ð7Þ

Where c is a random number between 0 and 1, rate is the
factor of scale and i, which changes from 0 toNL-1 (NL is the
size of the neighborhood), denotes the iterations generating
the neighborhood solution. In this paper, we set rate=0.95 as
in [30]. Coefficient f(r) is defined as follows:

f rð Þ ¼ 0; r ≥ 0:5
−1; r < 0:5

�
ð8Þ

Here, r is a random number between 0 and 1.

Implementation procedure

This section describes the implementation of the MCMPSO-
TS hybrid algorithm as follows:

Step 1: Initialize the parameter
Give the parameter c1 and c2, the range of w, the

scale of particle, the iterations, and the length of
tabu.

Step 2: Initialize the velocity and position
Using the method of generation of coordinate

that is introduced above, initialize the position and
velocity. The position cannot be the same.

Step 3: Calculate the fitness value

(1) calculate the fitness value by using the Eqs. (2) that is
introduced in calculation of free energy

(2) sort the fitness values from small to large;
(3) choose the smallest one as the candidate.

Step 4: Crossover operation, update the positions and ve-
locities of the particles

Step 5: Main algorithm
For time=1:MaxDT

(1) repeat the crossover procedure;
(2) update the positions and velocities of the particles

using Eqs. (4) and (5);
(3) calculate the fitness value;
(4) initialize the tabu list and obtain the candidate so-

lution;
while runcount<T
runcount=runcount+1;

(5) mutate and use Eq. (7) to update the position of
mutation;

(6) calculate the fitness value;
(7) sort the value of energy from the smallest to the largest

and choose the smallest one as candidate_next;
if candidate_next<best_so_far.value

(8) update candidate_now with the solution of neigh-
borhood whose the value of energy is the smallest;

(9) put candidate_now.xulie into the tabulist then up-
date the best_so_far with candidate_now;

else
for n=1:10

(10) index=find(cat(1,neighorhood.value)==candidate_
next(n));

tx=neighorhood(index(1)).xulie; tc=neighorhood
(index(1)).value;

(11) estimate that whether this object is in tabulist or
not. If it is, update the candidate_now then put it
into tabulist;

return best_so_far;
Step 6: Find the best solution and output it

Figure 3 shows the flowchart of the new
algorithm:

Table 1 Running results of Fibonacci sequences. E Energy value,
MCMPSO-TS multiple crossover and mutation particle swarm optimizer
and tabu search algorithm

Length Sequence E(MCMPSO-TS)

5 HPPHP −1

8 PHPHPPHP −2

13 HPPHPPHPHPPHP −5

21 PHPHPPHPHPPHPPHPHPPHP −8

34 HPPHPPHPHPPHPPHPHPPHP
HPPHPPHPHPPHP

−19

J Mol Model (2013) 19:3883–3891 3887



Experimental results and discussion

In this paper, the hybrid algorithm was implemented by
MATLAB R2009b under a Windows XP system. The pa-
rameters were set as follows: MaxDT = 1,000. The number
of particles was from 100 to 300. Run-count was 500. c1 and
c2 are both 2. All the results are achieved by running many
times and getting the best solution. The paper proposes the
computation of Fibonacci sequences of amino acids by using
MCMPSO-TS hybrid search algorithm in the 3D lattice
model. At the same time, sequences of real proteins were
also computed by the new hybrid search algorithm in the HP
lattice model. Additionally, we also compared the results
with those of published techniques.

Results of Fibonacci sequences

A Fibonacci sequence, which is defined as follows, was used
in the protein folding prediction [24]:

S0 ¼ H ; S1 ¼ P; :::; Siþ1 ¼ Si−1*Si ð9Þ

Where ‘*’ is connection symbol. So S2=HP, S3=PHP, let
H denotes hydrophobic while P denotes hydrophilic amino
acids [24].

Table 1 shows the lowest energy values of Fibonacci
sequences gained by the algorithm.

From Table 1, we can see that the results reflect the lowest
energy values of Fibonacci sequences that were acquired by
the new hybrid algorithm. The Fibonacci sequence was
firstly clearly proposed in the 3D lattice model. The
Fibonacci sequence is a classical mathematical model. It
can reflect the energy of protein amino acids that adhere to
some regular rules. Based on the point, we propose the
sequence and put it into practice, which proves the value of
research into the difference between the general sequences of
protein amino acids and the sequences of protein amino acids
that have some regular rules in energy and stability. This will
be our next research goal. Figures 4 and 5 in the Appendix
give the conformation of several sequences.

Results for real sequences

Next, we describe a real protein sequence. The sequence was
downloaded from the PDB database (http://pdbbeta.rcsb.org/
pdb/Welcome) [31]:

& 1BXL GQVGRQLAIIGDDINR
& 1EDP CSCSSLMDKECVYFCHL
& 1AGT GVPINVSCTGSPQCIKPCK

DQGMRFGKCMNRKCHCTPK

In this sequence the I,V,L,P,C,M,A,G are hydrophobic,
and D,E,F,H,K,N,Q,R,S,T, W,Y are hydrophilic.

Table 2 lists the results from real protein sequences comput-
ed by the new algorithm. Because current technology cannot
simulate more than a few micro-seconds of protein behavior, it
is not possible to determine complete atomic detail [20, 33, 35]
and the real protein cannot be simulated in a computer opera-
tion; however, the energy of the sequences of protein amino
acids can be calculated based on the HP model. Although the
results cannot reflect the structure of a real protein completely
and we cannot see the approximate simulating structure of the
real protein, the energy value gives us some reference for
estimating the range of energy values of real protein structure
and stability. This represents great progress. Figures 6 and 7 in
the Appendix give the conformation of 1BXL and 1EDP.

Compared result

To obtain an obvious comparative result, this paper selects the
same sequence as those examined in the 3D HP lattice model
[11, 14, 28, 35]. The sequences and results are presented in
Tables 4, 5 and 6 in the Appendix.

From Table 4, we can see that the results from the new
algorithm are the same as those obtained currently, thus show-
ing that the MCMPSO-TS algorithm is feasible. We can obtain
a stable structure using the new algorithm. The new algorithm
lays a solid basis for further research in this field, and repre-
sents a newmethod in this area. The ever increasing number of
sequences DNA sequences available meant that the number of
known amino acid sequences is also changing and increasing.
The algorithm presented here may play an important role in
promoting the development of protein structure prediction and
provide a new train of thought for the research in this area, and
may prove a valuable addition to the field. Figures 8 and 9 give
conformation of S1 and S5 (see Appendix).

Tables 5 and 6 present sequences and energy values from
[14]. From Table 6, we can see that our algorithm can
achieve the best value of most sequences. However, for
sequences longer than 48, the new algorithm is no longer
superior. Nevertheless, there is no doubt that one more
algorithm has been added to the field of protein structure
prediction and that our new method enriches the database of
algorithms. The proposed algorithm gives good reference
values for further research, and is thus worth pursuing and
continuing. Our results show that the new algorithm is better
for computing the short amino acid sequences, but not long
sequences. This will be the area we should continue to study
next.

Table 2 Running results of real protein sequence

Name Length E(MCMPSO-TS)

1BXL 16 −6

1EDP 17 −4

1AGT 38 −19
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Conclusions

In this paper, we have modeled the protein structure predic-
tion problem as a multimodal optimization problem. To
foster its development, several multimodal optimization
techniques have been implemented and tested. To summarize
the findings of this work: first, we propose a new method and
prove it to be feasible; second, real protein sequences and
Fibonacci sequences were applied to the 3D lattice model;
third, this new algorithm can achieve optimal values and
conformations quickly for most short sequences.

In particular, the paper proposes theMCMPSO-TS algorithm
for the problem of prediction of protein structure using the 3D
HP lattice model. The new hybrid search algorithm includes
enhanced PSO and enhanced TS, which use crossover and
mutation separately, and finds a better energy value for most of
the given sequences. Our algorithm is feasible. The proposed
experimental method using Fibonacci sequences and real protein
sequences is novel and represents a great step forward. Overall,
the results are good and promise to support the continuity of the
work. We believe that this paper makes a useful contribution to
this area of research. We will focus on larger proteins, long
sequences and the results of lower energy in future work.
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Appendix

Fig. 4 Conformation of sequence of length 8

Fig. 5 Conformation of sequence of length 34

Fig. 6 Conformation of sequence of 1BXL

Fig. 7 Conformation of sequence of 1EDP
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